Oblique Collisions MS (From OCR 4730)

Q1, (Jun 2006, Q5)

	M1		Σmv co direction.		ed in i	
$2x12\cos 60^{\circ} - 3x8 = 2a + 3b$	A1 M1		For using			
For LHS of equation below	A1		r or doing	, , , ,		
$0.5(12\cos 60^{\circ} + 8) = b - a$	A1		Complete signs of a with prev	and	b consistent	
Speed of B is 0.4ms ⁻¹ in i	M1 A1		For elimin		•	
direction a = -6.6	A1					
Component of A's velocity in j direction is	B1		STORY OF STREET		on diagram ibsequent	
Speed of A is 12.3ms ⁻¹	B1ft		WOIK.			
	M1		For using $\theta = \tan^{-1}\theta$		o/±i comp)	
Direction is at 122.4° to the i	A1ft	1	Accept $\theta = 57.6^{\circ}$ with			
direction		2	heta correctly identified.			
Q2, (Jan 2007, Q6)			2722		22411	
(i) $[u \sin 30^\circ = 3]$			M1		For momentum equation for B, normal to line of centres	
u = 6			A1	2		
(ii) $[4\sin 88.1^{\circ} = v \sin 45^{\circ}]$			M1		For momentum equation for A, normal to line of centres	
v = 5.65			A1			
			M1		For momentum equation along line of centres	
$0.4(4\cos 88.1^{\circ}) - \text{mu} \cos 30^{\circ} = -0.4(4\cos 88.1^{\circ})$	0.4v cc	s45°	A1			
m = 0.318			A1	5		
(iii)			M1		For using NEL	
$0.75(4\cos\theta + u\cos 30^\circ) = v\cos 30^\circ$	45°		A1			
$4\sin\theta = v\sin 45^{\circ}$			B1			
$[3\cos\theta + 4.5\cos 30^{\circ} = 4\sin\theta]$			M1		For eliminating v	
$8\sin\theta - 6\cos\theta = 9\cos 30^{\circ}$			A1	5	AG	

AlevelMathsRevsion.com

Q3, (Jun 2007, Q4)

$y=15\sin\alpha$ (=12)	B1		
$[4(15\cos\alpha) - 3 \times 12 = 4a + 3b]$	M1		For using principle of conservation of momentum in the direction of l.o.c.
Equation complete with not more than one error	A1		
4a + 3b = 0	A1		
	M1		For using NEL in the direction of
			l.o.c.
$0.5(15\cos\alpha + 12) = b - a$	A1		
[a = -4.5, b = 6]	M1		For solving for a and b
[Speed = $\sqrt{(-4.5)^2 + 12^2}$, Direction tan ⁻¹ (12/(-4.50)]	M1		For correct method for speed or direction of A
Speed of A is 12.8ms ⁻¹ and direction is 111°	A1		Direction may be stated in any
anticlockwise from 'i' direction			form, including $\theta = 69^{\circ}$ with
			θ clearly and appropriately indicated
Speed of B is 6ms ⁻¹ to the right	A1	10	Depends on first three M marks

Q4, (Jan 2009, Q5)

Initial i components of velocity for A and B	100	
are 4ms ⁻¹ and 3ms ⁻¹ respectively.	B1	May be implied.
	M1	For using p.c.mmtm. parallel to l.o.c.
3x4 + 4x3 = 3a + 4b	A1	1. 1.5.2
	M1	For using NEL
0.75(4-3) = b-a	A1	
	M1	For attempting to find a
a = 3	A1	Depends on all three M marks
Final j component of velocity for A is 3ms ⁻¹	B1	May be implied
THE COURT OF THE PERSON AND THE PERS	M1	For using $tan^{-1}(v_i/v_i)$ for A
Angle with l.o.c. is 45° or 135°	A1ft	ft incorrect value of a $(\neq 0)$ only
	[10]	
		SR for consistent sin/cos mix (max 8/10)
		3x3 + 4x4 = 3a + 4b and
		b-a=0.75(3-4)
		M1 M1 as scheme and A1 for both equ's
		a = 4 M1 as scheme A1
		j component for A is 4ms ⁻¹ B1
	10	Angle $\tan^{-1}(4/4) = 45^{\circ} \text{ M1}$ as scheme A1

Q5, (Jan 2010, Q2)

<u> </u>		For using the principle of conservation of
	M1	momentum
$2a + 3b = 2 \times 4$	A1	
	M1	For using NEL
$b - a = 0.6 \times 4$	A1	(20)
[2(b-2.4)+3b=8]	M1	For eliminating a
b = 2.56	A1	3095
v = 2.56	B1ft	ft v = b
	[7]	

AlevelMathsRevsion.com

Q6, (Jun 2012, Q6)

(i)		M1	For using $\frac{1}{2}m(u^2-v^2) = 7.56$ and solving for v; must use '5', allow sign error/missing $\frac{1}{2}$, missing m.
	$\frac{1}{2} \times 2(5^2 - v^2) = 7.56$ $(v^2 = 17.44)$	A1	missing 72, missing m
	Speed is 4.18 ms ⁻¹	A1	Do not award if this is not candidate's final answer.
		[3]	
(ii)	$v_{Ay} = u_{Ay} = 5\sin\alpha = 4$	B1	
	$[v_{Ax}^2 + 4^2 = 17.44 \rightarrow v_{Ax}^2 = 1.44]$	M1	For using $v_{Ax}^2 + v_{Ay}^2 = 17.44$
	$v_{Ax} = \pm 1.2$ and v_{Ax} must be less than 0.8		
	→Component has magnitude 1.2 ms ⁻¹ and		
	direction to the left	A1	
		[3]	
(iii)		M1	For using the pcm parallel to loc must use 5cosα, 2, 0.8 and '1.2', 4 terms or
		125-2-2	equivalent, allow sign errors, condone one mass missing
	$2 \times 3 - m \times 2 = 2 \times (-1.2) + m \times 0.8$	A1 FT	FT incorrect v_{AX}
	m=3	A1	CAO
		[3]	
(iv)	[e(3+2) = (1.2+0.8)]	M1	For using NEL with their '1.2' and 5cosα, 2 and 0.8; allow sign errors. Must be right
			way up
	e = 0.4	A1	
		[2]	

Q7, (Jun 2014, Q3)

(i)	Using conservation of momentum along loc $0.1 \times 2.8 + 0.4 \times 1 \times 0.8 = 0.4 \times b$ Using NEL $b - 0 = -e(1 \times 0.8 - 2.8)$	M1 A1 M1 A1	3 (or 4) terms, correct dimensions Vel diff after = e x vel diff before	Allow sign errors, (sin/cos) may see $b = 1.5$ Allow $\pm e$
	e = 0.75	A1 [5]		
(ii)	$b(perp) = 0.6$ $\tan \beta = \frac{b(perp)}{\text{their 1.5}},$	B1 M1*	$\beta = 21.8^{\circ}$; ft 1.5 from (i)	May be on diagram 21.8014(0.381 rad)
	angle turned through is $36.9^{\circ} - \beta$ = 15.1° (0.262 rad)	*M1 A1 [4]	Must be 36.9° – their β (soi)	36.86989 15.068 scB1 for 165° after B1M1

AlevelMathsRevsion.com

<u>Q8, (Jun 2015, Q5)</u>

(i)	use of conservation of momentum	M1*	must be 3 non-zero terms	allow sign errors, m/2m errors, sin/cos
	$2ma\cos\alpha - mb\cos\beta = mx2x\cos 45^{\circ}$ use of NEL	A1 M1*	must be 3 non-zero terms, and 'e' in correct	allow sign errors, sin/cos,
	use of IVEE	1411	postion	anow sign errors, silveos,
	$2\cos 45^{\circ} - 0 = -2/3 \left(-b\cos\beta - a\cos\alpha\right)$	A1	101	
	attempt to eliminate $a\cos\alpha$ or $b\cos\beta$	*M1	dep both previous M1 marks	
	$a\cos\alpha = 5\sqrt{2}/6$	A1	AG	
	$b\cos\beta = 2\sqrt{2/3}$ oe	A1 [7]	dep final M1 and www	
(::)	$a\sin\alpha = 2$	B1		
(ii)	attempt to solve $a\sin\alpha = 2$ and $a\cos\alpha = 5\sqrt{2}/6$	M1	need to eliminate a or α	
	attempt to solve $a\sin a - 2$ and $a\cos a - 3\sqrt{2}/6$ a = 2.32	Al	need to eminiate u or α	2.321398,
	$\alpha = 2.32$ $\alpha = 59.5^{\circ}$	A1 [4]	accept 1.03 radians	59.49104°, 1.0383rad
	$\alpha - 39.3$	A1 [4]	accept 1.05 fautalis	39.49104 , 1.0303lau

Q9, (Jun 2016, Q3)

(i)	C of M $2m \times 5 \cos \alpha - 3m \times 3\frac{1}{4}\cos \beta = 2ma + 3mb$	M1*	allow sign and number slips.	a and b are vels of A and B to right
	2mx4 - 3mx1.25 = 2ma + 3mb	A1	(2a+3b=4.25)	
	Newton's experimental law	M1*	Or equivalent; allow sign slips	
	$b-a=-\frac{2}{3}(-1.25-4)$	A1	(b-a=3.5)	Consistent
	Attempt to solve simultaneous equations	*M1	v Science America	
	$b = 2.25 \text{ (m s}^{-1})$	A1	CAO	-2.25 if b defined to left
	$(a = -1.25 \text{ so})$ speed of $A = 3.25 \text{ (m s}^{-1})$	A1 7	CAO	
(ii)	A and B both have same component of velocity perp to 1 o c After collision with wall B must move faster than A	B1 B1	May be implied	
	Coeff of restitution > 5/9 (accept > 0.5 recurring, or 0.556)	B1 3	Do not allow ≥	Ignore $e \le 1$, etc